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Using Feynman-Kac and Cameron-Martin-Girsanov formulas, we find a generalized integral fluctuation
theorem �GIFT� for general diffusion processes by constructing a time-invariable integral. The existing integral
fluctuation theorems can be derived as its specific cases. We interpret the origin of the GIFT in terms of time
reversal of stochastic systems.
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I. INTRODUCTION

The Feynman-Kac �FK� formula, originally found by
Feynman in quantum mechanics �1� and extended by Kac
�2�, establishes an important connection between partial dif-
ferential equations �PDEs� and stochastic processes. Using
this formula, one may solve certain PDE by simulating a
stochastic process. Recently, the remarkable FK formula was
employed by Hummer and Szabo �HS� �3� to prove the cel-
ebrated Jarzynski equality �JE� �4,5� in nonequilibrium sta-
tistics �6�. Their work not only provided a concise proof but
also pointed out that intrinsic free-energy surfaces of biomol-
ecules could be efficiently extracted by nonequilibrium
single-molecule manipulation experiments.

Compared to extensive interests of applications of HS’s
work in single-molecule biophysics �7,8�, little attention was
paid to their proving method. Very recently, Ge and Jiang
�GJ� reinvestigated previous derivation from a rigorously
mathematical point of view �9�. They pointed out that HS
misused the FK formula since it is usually applied for Kol-
mogorov backward equation �10� rather than Kolmogorov
forward �or Fokker-Planck� equation. In fact, Chetrite and
Gawedzki �CG� �11� gave a correct proof of the JE using the
FK formula slightly earlier. Interestingly, however, these two
works seem to be apparently distinct though they employed
the same mathematical formula: GJ constructed a simple
time-invariable integral �the proof of theorem 2.6 in Ref.
�9��, whereas CG based on time-reversal concept.

In addition to the JE, there are several analogous equali-
ties found in the past few years �12–18�. All of them have a
type of

�exp�− A�� = 1, �1�

where A is a functional of the stochastic trajectory of a sto-
chastic system and angular brackets denote an average over
the ensemble of the trajectories. For instance, A is total en-
tropy change along a trajectory �15�. These equalities were
called integral fluctuation theorems �IFTs� to distinguish the
detailed fluctuation theorems �DFTs� �13,19–22�. Due to the
similarity between the IFTs with the JE in formality, one may
naturally consider whether these equalities or even more gen-
eral versions could be derived by GJ’s approach as well. On
the other hand, it should be intriguing to clarify the relation-

ship between their approach and the others, e.g., the time
reversal, which was not performed in the previous work. In
this Rapid Communication, we present our results about
these two questions. With the help of the FK and Cameron-
Martin-Girsanov �CMG� �23,24� formulas, we obtain a gen-
eralized integral fluctuation theorem by extending GJ’s idea.
We find this theorem could be explained from the concept of
time reversal. Because we focus on the general Markovian
diffusion processes, little physics is mentioned here. The de-
tailed discussions about the existing IFTs in literature might
remedy it.

II. TIME-INVARIABLE INTEGRAL

We consider a general N-dimension stochastic system x
= �xi� , i=1, . . . ,N described by a stochastic differential equa-
tion �SDE� �25�

dx�t� = A�x,t�dt + B1/2�x,t�dW�t� , �2�

where dW is an N-dimensional Wiener process, A= �Ai� de-
notes a N-dimensional drift vector, and B1/2 is the square root
of a N�N positive definite diffusion matrix B= �Bij�. We use
Ito’s convention for stochastic differentials. Rather than di-
rectly solving Eq. �2�, one usually converts the SDE into two
equivalent PDEs of the conditional probability density
��x , t 	x� , t���t� t��: the forward Fokker-Planck equation
�FPE� �t�=L�x , t��, with

L�x,t� = − �xi
Ai�x,t� +

1

2
�xi

�xj
Bij�x,t� , �3�

and the backward FPE �t��=−L+�x� , t���, with

L+�x,t� = Ai�x,t��xi
+

1

2
Bij�x,t��xi

�xj
. �4�

The initial conditions in both cases are ��x , t 	x� , t�
=��x−x��. The two operators L and L+ are adjoint to each
other. Here we use Einstein’s summation convention
throughout this work unless explicitly stated.

Based on the symbols and definitions above, we find that,
if u�x , t� satisfies a partial differential equation

�t�u�x,t�� = − L+�x,t��u�x,t�� − f−1�x,t����t�f�x,t��

− L�x,t��f�x,t���u�x,t�� + f−1�x,t��

��La�x,t��g�x,t�� − g�x,t��La
+�x,t���u�x,t�� ,
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where f�x , t�� and g�x , t�� are arbitrary normalized smooth
positive functions �26�, La and La

+ are adjoint operators such
as Eqs. �3� and �4�, which may be the same with or different
from those of the system we focus on, we have

d

dt�

 dxf�x,t��u�x,t�� = 0. �6�

The proof is obvious if one makes use of the adjoint property
of these operators and notes that the derivative of the integral
with respect to time is

d

dt�

 dxf�x,t��u�x,t�� =
 dx�f�t�u�x,t�� + u�t�f�x,t��� . �7�

This is a simple generalization of GJ’s idea, where the last
three terms in Eq. �5� were absent �27�. Multiplying both
sides of this PDF by f�x , t�, one may see that this equation
has a certain symmetry with respect to the functions f and u.
In the following, we investigate Eq. �5� with the Liouville-
and Fokker-Planck-type La, respectively. Although one may
think that the former is only a specific case of the latter
�vanishing diffusion matrix�, the Liouville type may be more
intriguing that will be seen shortly.

III. LIOUVILLE-TYPE La(x , t)

We assume

Lag�x,t�� = 2�xi
Si�x,t�� , �8�

and S= �Si�x , t�� is an arbitrary vector having natural bound-
ary condition. The coefficient 2 is for convenience in discus-
sion. We rewrite Eq. �5�

�t�u�x,t�� = − L+�x,t��u�x,t�� − f−1�x,t����t�f�x,t��

− L�x,t��f�x,t���u�x,t��

+ 2f−1�x,t����xi
Si�x,t�� + Si�x,t���xi

�u�x,t�� .

�9�

Using the FK and CMG formulas �10�, we obtain a stochas-
tic representation of the solution u�x , t�,

u�x,t�� = Ex,t��e−J�f ,S,x�·��q�x�t��� , �10�

where q�x� is the final condition of u�x , t�, and the functional

J�f ,S,x� · �� = 

t�

t 1

f
��L − ���f + 2�xi

Si +
2

f
Si�B−1�ijSj�d�

+ 

t�

t 2

f
Si�B−1�ij�dxj − Aid�� , �11�

where the expectation Ex,t� is an average over all trajectories
x� · � determined by Eq. �2� taken conditioned on x�t��=x,
and the last term is a Ito stochastic integral. Choosing t�=0
and combining Eqs. �6� and �10�, we have


 dx�f�x�,0�Ex�,0�e−J�f ,S,x�·��q�x�t��� =
 dxf�x,t�q�x� . �12�

This equation has the same form as Eq. �1� for q�x�=1. We
call it generalized integral fluctuation theorem �GIFT�. Note
other functions of q�x� are still useful in practice.

Relationship between the GIFT and existing IFTs

Existing several IFTs are specific cases of Eq. �12�. First
is to choose Si=0 and f = pss�x , t�, where pss�x , t�� is the tran-
sient steady-state solution

L�x,t��pss�x,t�� = 0. �13�

Then functional �11� is simply

J = − 

0

t

�� ln pss�x���,��d� . �14�

GJ analyzed this case with a final condition q�x�=1 in great
details. According to the system driven by a time-dependent
conservative �a gradient of a potential� or nonconservative
force, Eq. �12� reduces to Jarzynski equality �4,5� and
Hatano-Sasa relation �14�, respectively �9�. Here we do not
repeat the same derivatives. We only point out the necessity
of the general final condition: one obtains key Eq. �4� in
HS’s work only choosing q�x�=��x−z�.

The second case is to choose Si to be the probability cur-
rent Ji�f� of an arbitrary normalized function f�x , t�, where

Ji�f�x,t�� = Ai�x,t�f�x,t� −
1

2
�xj

Bij f�x,t� . �15�

Substituting the current into Eq. �11� and doing some deri-
vations �the details see the Appendix�, we obtain

J = ln
f�x�t��,t��
f�x�t�,t�

+ 2�S�

t�

t

Âi�B−1�ij

��ẋj −
1

2
�B−1/2�ks�xk

�B−1/2�sj
T�d� , �16�

where Âi=Ai−�xl
Bil /2 and ẋj =dxj /d�. Note that we used the

Stratonovich’s integral �denoted by “S” therein�. Particularly,
if the diffusion matrix is constant that is usually assumed in
Langevin equation and f�x , t� is the solution of the stochastic
system with a initial condition f�x ,0�, the functional is just
the total entropy change �stot: the first term in Eq. �16� is the
system entropy change and the second is the entropy change
of environment �16�. Hence, the GIFT with Eq. �16� is the
IFT of the total entropy �15,16�.

The last case is for the system being in a nonequilibrium
steady state with a distribution pss�x�. We choose f = pss�x�
and Si=Ji�pss�. Considering that �xi

Si=0, the functional be-
comes the housekeeping heat �17�

J = 2

t�

t Ji�pss�
pss �B−1�ij�ẋj −

1

2
�B−1/2�kl�xk

�B−1/2�lj
T�d� . �17�

Of course, one can obtain this functional from Eq. �16� di-
rectly. Importantly, this IFT is even correct for time-
dependent case �17�. We may indeed prove it using CMG
formula only �11�.
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IV. FOKKER-PLANCK-TYPE La(x , t�)

If the diffusion matrix of La is not zero, we can still
obtain a GIFT given

La�x,t�� = �− �xi
ai�x,t�� +

1

2
�xi

�xj
bij�x,t��� . �18�

Assuming ai=a1
i �x , t�−2a2

i �x , t�, we split this operator into a
sum of a Fokker-Planck and Liouville operators, i.e.,

La�x,t�� = �La
1�x,t�� + 2�xi

a2
i � , �19�

where La
1 is the same with Eq. �18� except that ai is replaced

by a1
i . Substituting Eq. �19� into Eq. �5� and doing a simple

rearrangement, one may obtain Eq. �9� again if we redefine
the drift vector and diffusion matrix of the operator L�x , t��
to be

Ai� = Ai�x,t�� + ai
1�x,t��g�x,t��/f�x,t�� ,

Bij� = Bij�x,t�� + bij�x,t��g�x,t��/f�x,t�� , �20�

and Si=a2
i �x , t��g�x , t��. Hence, we have a GIFT �Eq. �12��

except that the expectation Ex,t� is now an average over the
trajectories generated from a new stochastic system

dx�t� = A��x,t�dt + B�1/2�x,t�dW�t� . �21�

From this aspect, Eq. �6� with the Fokker-Planck-type La
seems to not provide additional information compared to the
Liouville type �28�.

V. GIFT AND TIME REVERSAL

We must emphasize that the derivation of the GIFT �Eq.
�12�� is based on the adjoint characteristic of the FK opera-
tors without resorting to any physical reason. It would be
intriguing to establish a relationship between the equality
and time reversal similar to that done by Crook �13� in in-
terpreting JE �4,5�. CG recently suggested that the different
fluctuation relations in literature may be traced to different
time reversals �11�. In the remainder of the work, we employ
this viewpoint to understand the origin of Eq. �5� and the
GIFT.

We first give a definition of a time reversal �11�. The
variable xi of the stochastic system is even or odd according
to their rules under time reversal t�→ t− t�: if xi→yi=+xi is
even and xi→yi=−xi is odd. We write them in abbreviation
xi→yi=�ixi and �i= �1. The drift vector splits into “irre-
versible” and “reversible” parts, A=Airr+Arev. Under a time

reversal, these vectors are transformed into Ã= Ãirr+ Ãrev,
where

Ãi
irr�x,t�� = �iAi

irr�y,s� , �22�

Ãi
rev�x,t�� = − �iAi

rev�y,s� , �23�

y= �yi�, and s= t− t��0	 t�	 t�. We also define a transforma-
tion of the diffusion matrix to be

B̃ij�x,t�� = �i� jBij�y,s� . �24�

Note that no summation over repeated indices here. Because
the splitting is completely arbitrary, one may regard it as an
equivalent definition of a certain time reversal.

Considering a forward FPE �sp�y ,s�= L̃�y ,s�p�y ,s� with
the time-reversed drift vector and diffusion matrix,

L̃�y,s� = − �yi
Ãi�y,s� +

1

2
�yi

�yj
B̃ij�y,s� . �25�

Substituting

p�y,s� = f�x,t��v�x,t�� �26�

into above equation and doing some simple derivations, we
obtain

�t�v�x,t�� = − L+�x,t��v�x,t�� − f−1�x,t����t�f�x,t��

− L�x,t��f�x,t���v�x,t�� + 2f−1�x,t��

���xi
Si

irr�f� + Si
irr�f��xi

�v�x,t�� , �27�

where an irreversible probability current is defined to be

Si
irr�f� = Ai

irr�x,t��f�x,t�� −
1

2
�xk

Bik�x,t��f�x,t�� . �28�

We immediately see that Eq. �9� would be the same with Eq.
�27� if Si=Si

irr�f�. Under this circumstance, Eq. �12� is a ob-
vious consequence of the specific time reversal of the sto-
chastic system in that the integral of the left-hand side of Eq.
�6� equals to dyp�y ,s�, which is conservative with respect
to time. On the other hand, considering that the splitting of
the drift vector is completely arbitrary, we can define a time
reversal for a given vector Si by

Airr�x,t�� =
1

f�x,t��
�Si�x,t�� +

1

2
�xk

Bik�x,t��f�x,t��� ,

�29�

Arev�x,t�� = Ai�x,t�� − Airr�x,t�� . �30�

Then the GIFT for any vector S is a consequence of the new
defined time reversal of the stochastic system. The reader
should be reminded that these time reversals are not always
meaningful or easily realizable in physics. Before ending the
section, we give two comments about Eq. �26�. First, for a
homogenous diffusion process that satisfies the detailed bal-
ance, this equation has been used earlier to connect the for-
ward FK solution p�x , t� and backward FK solution v�x , t�,
where f�x , t�= peq�x� �25�. Second, Eq. �26� and the stochas-
tic representation solution v�x , t�� �Eq. �10�� are crucial for
achieving the DFTs �12,13�. CG �11� gave a detailed discus-
sion about this point �proposition 1 therein�.

VI. CONCLUSION

In this Rapid Communication, we obtain a generalized
integral fluctuation theorem for diffusion processes using the
famous FK and CMG formulas. Although one might think
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that this result �Eq. �12�� is simple from the point of view of
time reversal that we explained here, the derivation by con-
structing a time-invariable integral is novel. An apparent
limit of this work is that we did not show any possible ap-
plications or new physics about the GIFT. We do not solve
this point yet. We close this work by pointing out several
directions that we may further improve the current results.
First is to give rigorous conditions for applying FK and
CMG formulas. Second, we may extend the results for the
continuous diffusion processes to discrete state case, e.g.,
chemical master equation. Finally, the most interesting and
urgent question to us is to apply the GIFT in practical prob-
lems, e.g., free-energy reconstruction of single-molecule ma-
nipulation.
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APPENDIX: DERIVATION OF THE TOTAL ENTROPY

Substituting Eq. �15� into Eq. �11� and separating the
terms into f-dependent and f-independent parts, we obtain

J = 

t�

t

��xi
Âi + 2Âi�B−1�ijÂj�d� + 2Âi�B−1/2�ijdWj

− 

t�

t ��� ln f + Ai�xi
ln f +

1

2
Bij�xi

�xj
ln f�d�

+ ��xi
ln f��B1/2�ijdWj . �A1�

Employing SDE �2�, the second integral in above equation
becomes



t�

t ��� ln f +
1

2
Bij�xi

�xj
ln f�d� + �xi

ln fdxi, �A2�

which is just the system entropy change t�
t d ln f

=ln�f�x�t� , t� / f�x�t�� , t��� according to the Ito formula �25�.
The entropy change of environment in Eq. �16� is derived
from the first integral in Eq. �A1� by converting the Ito’s
stochastic integral into the Stratonovich’s:



t�

t

2Âi�B−1/2�ijdWj = �S�

t�

t

2Âi�B−1/2�ijdWj

−
1

2
�B1/2� jk�xk

�2�B−1/2�ij
TÂi�d� .

�A3�

An alternative method is based on time-reversal technique.
Previous discussion shows that for u�x , t�� satisfying Eq. �9�
and Si=Ji�f�, we can define a time reversal with Airr=A and
Arev=0. Then f�x , t��u�x , t��= p�y ,s� is a solution of FPE
�25�. Because f is arbitrary, we may choose f =1 and
w�x , t��= p�y ,s�. Hence we have u�x , t��=w�x , t��exp�
−ln f�x , t���. Obviously, the functional of the stochastic rep-
resentation of w�x , t�� is the first integral of Eq. �A1�.
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